Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124248, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38599026

ABSTRACT

Ferroptosis is a type of lipid peroxidation-induced apoptosis brought on by imbalances in iron metabolism and redox. It involves both the thiol-associated anti-ferroptosis pathway and the excessive buildup of reactive oxygen species (ROS), which stimulates the ferroptosis pathway. Determining the precise control mechanism of ferroptosis requires examining the dynamic connection between reactive sulfur species (RSS) and ROS. Cysteine (Cys) and peroxynitrite (ONOO-) are highly active redox species in organisms and play dynamic roles in the ferroptosis process. In this study, a coumarin dye was conjugated with specific response sites for Cys and ONOO-, enabling the simultaneous detection of Cys and ONOO- through the green and red fluorescence channels, respectively (λem = 498 nm for Cys and λem = 565 nm for ONOO-). Using the probe LXB, we monitored the changes in Cys and ONOO- levels in the ferroptosis pathway induced by erastin. The results demonstrate a significant generation of ONOO- and a noticeable decrease in intracellular Cys levels at the beginning upon erastin treatment and finally maintains a relatively low level. This study presents the first probe to investigate the intracellular redox modulation and control between Cys and ONOO- during ferroptosis, providing valuable insights into the potential mutual correlation between Cys and ONOO- in this process.


Subject(s)
Cysteine , Ferroptosis , Fluorescent Dyes , Peroxynitrous Acid , Ferroptosis/drug effects , Fluorescent Dyes/chemistry , Cysteine/metabolism , Cysteine/analysis , Humans , Peroxynitrous Acid/analysis , Peroxynitrous Acid/metabolism , Spectrometry, Fluorescence , Oxidation-Reduction , Piperazines/pharmacology , Piperazines/chemistry , Coumarins/chemistry , Coumarins/pharmacology
2.
Talanta ; 274: 126028, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38599126

ABSTRACT

Mechanical forces play a crucial role in cellular processes, including ferroptosis, a form of regulated cell death associated with various diseases. However, the mechanical aspects of organelle lipid droplets (LDs) during ferroptosis are poorly understood. In this study, we designed and synthesized a fluorescent probe, TPE-V1, to enable real-time monitoring of LDs' viscosity using a dual-channel fluorescence-on model (red channel at 617 nm and NIR channel at 710 nm). The fluorescent imaging of using TPE-V1 was achieved due to the integrated mechanisms of the twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE). Through dual-emission channel fluorescence imaging, we observed the enhanced mechanical energy of LDs triggering cellular mechanosensing, including ferroptosis and cell deformation. Theoretical calculations confirmed the probe's behavior, showing that high-viscosity media prevented the rotation processes and restored fluorescence quenching in low viscosity. These findings suggest that our TICT-TPE design strategy provides a practical approach to study LDs' mechanical properties during ferroptosis. This development enhances our understanding of the interplay between mechanical forces and LDs, contributing to the knowledge of ferroptotic cell death and potential therapeutic interventions targeting dysregulated cell death processes.


Subject(s)
Ferroptosis , Fluorescent Dyes , Lipid Droplets , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Fluorescent Dyes/chemistry , Humans , Optical Imaging , Viscosity , Fluorescence
3.
Life Sci ; 342: 122538, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38428571

ABSTRACT

Pulmonary disorders, including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), pulmonary hypertension (PH), and lung cancer, seriously impair the quality of lives of patients. A deeper understanding of the occurrence and development of the above diseases may inspire new strategies to remedy the scarcity of treatments. Type I protein arginine methyltransferases (PRMTs) can affect processes of inflammation, airway remodeling, fibroblast proliferation, mitochondrial mass, and epithelial dysfunction through substrate methylation and non-enzymatic activity, thus affecting the occurrence and development of asthma, COPD, lung cancer, PF, and PH. As potential therapeutic targets, inhibitors of type I PRMTs are developed, moreover, representative compounds such as GSK3368715 and MS023 have also been used for early research. Here, we collated structures of type I PRMTs inhibitors and compared their activity. Finally, we highlighted the physiological and pathological associations of type I PRMTs with asthma, COPD, lung cancer, PF, and PH. The developing of type I PRMTs modulators will be beneficial for the treatment of these diseases.


Subject(s)
Asthma , Hypertension, Pulmonary , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Pulmonary Fibrosis , Humans , Hypertension, Pulmonary/drug therapy , Lung Neoplasms/drug therapy , Asthma/pathology
4.
ACS Appl Mater Interfaces ; 16(9): 11730-11739, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38407090

ABSTRACT

Photoluminescent metal-organic frameworks (MOFs) have been a subject of considerable interest for many years. However, the regulation of excited states of MOFs at the single crystal level remains restricted due to a lack of control methods. The singlet-triplet emissive property can be significantly influenced by crystal conformational distortions. This review introduces an intelligent responsive MOF material, denoted as LIFM-SHL-3a, characterized by flexible C-S-C bonds. LIFM-SHL-3a integrates elastic structural dynamics with fluorescence and room temperature phosphorescence (RTP) modulation under heating conditions. The deformable carbon-sulfur bond essentially propels the distortion of molecular conformation and alters the stacking mode, as illustrated by single-crystal-to-single-crystal transformation detection. The deformation of flexible C-S-C bonds leads to different noncovalent interactions in the crystal system, thereby achieving modulation of the fluorescence (F) and RTP bands. In the final state structure, the ratio of fluorescence is 66.7%, and the ratio of RTP is 32.6%. This stands as a successful demonstration of modulating F/RTP within the dynamic MOF, unlocking potential applications in optical sensing and beyond. Especially, a PL thermometer with a relative sensitivity of 0.096-0.104%·K-1 in the range of 300-380 K and a H2S probe with a remarkably low LOD of 125.80 nM can be obtained using this responsive MOF material of LIFM-SHL-3a.

5.
Mol Cell Biochem ; 479(4): 831-841, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37199893

ABSTRACT

Metastasis is the cause of poor prognosis in ovarian cancer (OC). Enhancer of Zeste homolog 2 (EZH2), a histone-lysine N-methyltransferase enzyme, promotes OC cell migration and invasion by regulating the expression of tissue inhibitor of metalloproteinase-2 (TIMP2) and matrix metalloproteinases-9 (MMP9). Hence, we speculated that EZH2-targeting therapy might suppress OC migration and invasion. In this study, the expression of EZH2, TIMP2, and MMP9 in OC tissues and cell lines was analyzed using The Cancer Genome Atlas (TCGA) database and western blotting, respectively. The effects of SKLB-03220, an EZH2 covalent inhibitor, on OC cell migration and invasion were investigated using wound-healing assays, Transwell assays, and immunohistochemistry. TCGA database analysis confirmed that the EZH2 and MMP9 mRNA expression was significantly higher in OC tissues, whereas TIMP2 expression was significantly lower than that in normal ovarian tissues. Moreover, EZH2 negatively correlated with TIMP2 and positively correlated with MMP9 expression. In addition to the anti-tumor activity of SKLB-03220 in a PA-1 xenograft model, immunohistochemistry results showed that SKLB-03220 markedly increased the expression of TIMP2 and decreased the expression of MMP9. Additionally, wound-healing and Transwell assays showed that SKLB-03220 significantly inhibited the migration and invasion of both A2780 and PA-1 cells in a concentration-dependent manner. SKLB-03220 inhibited H3K27me3 and MMP9 expression and increased TIMP2 expression in PA-1 cells. Taken together, these results indicate that the EZH2 covalent inhibitor SKLB-03220 inhibits metastasis of OC cells by upregulating TIMP2 and downregulating MMP9, and could thus serve as a therapeutic agent for OC.


Subject(s)
Acrylamides , Enhancer of Zeste Homolog 2 Protein , Ovarian Neoplasms , Humans , Female , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Ovarian Neoplasms/genetics , Cell Line, Tumor , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Matrix Metalloproteinase 9/genetics , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic
6.
Angew Chem Int Ed Engl ; 62(52): e202315382, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37945541

ABSTRACT

By synergistically employing four key strategies: (I) introducing tetraphenylethylene groups as the central core unit with aggregation-induced emission (AIE) properties, (II) optimizing the π-conjugated length by extending the building block branches, (III) incorporating flexible groups containing ethylenic bonds, and (IV) applying crystal engineering to attain dense stacking mode and highly twisty conformation, we successfully synthesized a series of hydrogen-bonded organic frameworks (HOFs) exhibiting exceptional one/two-photon excited fluorescence. Notably, when utilizing the fluorescently superior building block L2, HOF-LIFM-7 and HOF-LIFM-8 exhibiting high quantum yields (QY) of 82.1 % and 77.1 %, and ultrahigh two-photon absorption (TPA) cross-sections of 148959.5 GM and 123901.1 GM were achieved. These materials were successfully employed in one and two-photon excited lysosome-targeting cellular imaging. It is believed that this strategy, combining building block optimization and crystal engineering, holds significant potential for guiding the development of outstanding fluorescent HOF materials.

7.
Eur J Med Chem ; 261: 115841, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37788550

ABSTRACT

Triple-negative breast cancer (TNBC) has become a serious threat to women's health. Research on epigenetic drugs is gradually deepening and is expected to provide new options for the treatment of TNBC. G9a/GLP has been shown to play an important role in the development of a variety of tumors, including TNBC. Most reported G9a/GLP inhibitors are reversible inhibitors, and covalent inhibitors with novel mechanisms of action are expected to offer unique advantages. In this study, we designed a series of novel G9a/GLP covalent inhibitors using a structure-based drug design strategy. Compound 7c (ZZM-1220) exhibited potent enzyme inhibitory activity and anti-TNBC proliferative activity. Our biochemical studies showed that ZZM-1220 could covalently bind to G9a/GLP and inhibit H3K9me2 in cells. It could significantly induce apoptosis of TNBC cells and block the cell cycle in the G2/M phase. It is worth noting that ZZM-1220 continuously inhibited the growth of cancer cells and the expression of H3K9me2 after washing out. These data suggested that ZZM-1220 could be used as a promising lead compound for the development of G9a/GLP covalent inhibitors for the treatment of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology
8.
Curr Top Med Chem ; 23(25): 2373-2393, 2023.
Article in English | MEDLINE | ID: mdl-37818582

ABSTRACT

BACKGROUND: Breast cancer has always been a vicious disease that threatens female health. Although the existing surgery, radiotherapy, chemotherapy, and kinase-targeted drugs have achieved certain effects, there are still many shortcomings. Novel compounds used to treat breast cancer, particularly TNBC, are eagerly being discovered. METHODS: More than 100 novel compounds that show anti-breast cancer growth were compiled from public databases. The compound design strategies, structure-activity relationship research, and activity evaluation methods have also been reviewed. RESULTS: These novel anti-breast cancer compounds can be divided into mechanisms of action: kinase inhibitors, epigenetic inhibitors, dual inhibitors, degraders, metal complexes, etc. The design strategies mainly include conformational constraint, scaffold-hopping, merging key pharmacophores, etc. Structure-activity relationship studies of these new compounds mainly focus on increasing activity, improving selectivity, increasing membrane permeability, reducing toxicity, improving pharmacokinetic properties, etc. Conclusion: Through the structural optimization of kinase inhibitors, microtubule-targeted drugs, and metal complexes, it is expected to obtain more advantageous breast cancer treatment drugs. It cannot be ignored that epigenetic inhibitors, dual inhibitors and degraders may bring new breast cancer treatment strategies.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Coordination Complexes , Female , Humans , Breast Neoplasms/drug therapy , Structure-Activity Relationship , Antineoplastic Agents/chemistry
9.
Angew Chem Int Ed Engl ; 62(37): e202309172, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37488076

ABSTRACT

The multiple metastable excited states provided by excited-state intramolecular proton transfer (ESIPT) molecules are beneficial to bring temperature-dependent and color-tunable long persistent luminescence (LPL). Meanwhile, ESIPT molecules are intrinsically suitable to be modulated as D-π-A structure to obtain both one/two-photon excitation and LPL emission simultaneously. Herein, we report the rational design of a dynamic CdII coordination polymer (LIFM-106) from ESIPT ligand to achieve the above goals. By comparing LIFM-106 with the counterparts, we established a temperature-regulated competitive relationship between singlet excimer and triplet LPL emission. The optimization of ligand aggregation mode effectively boost the competitiveness of the latter. In result, LIFM-106 shows outstanding one/two-photon excited LPL performance with wide temperature range (100-380 K) and tunable color (green to red). The multichannel radiation process was further elucidated by transient absorption and theoretical calculations, benefiting for the application in anti-counterfeiting systems.

10.
Eur J Med Chem ; 258: 115628, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37437349

ABSTRACT

Fibroblast growth factor receptor 4 (FGFR4) has been proved to be an effective target for cancer therapy. Aberration in FGF19/FGFR4 signaling is oncogenic driving force in human hepatocellular carcinoma (HCC). FGFR4 gatekeeper mutations induced acquired resistance remains an unmet clinical challenge for HCC treatment. In this study, a series of 1H-indazole derivatives were designed and synthesized as new irreversible inhibitors of wild-type and gatekeeper mutant FGFR4. These new derivatives showed significant FGFR4 inhibitory and antitumor activities, among which compound 27i was demonstrated to be the most potent compound (FGFR4 IC50 = 2.4 nM). Remarkably, compound 27i exhibited no activity against a panel of 381 kinases at 1 µM. Additionally, compound 27i displayed nanomolar IC50s against huh7 (IC50 = 21 nM) and two mutant cell lines, BaF3/ETV6-FGFR4-V550L and BaF3/ETV6-FGFR4-N535K (IC50 = 2.5/171 nM). Meanwhile, compound 27i exhibited potent antitumor potency (TGI: 83.0%, 40 mg/kg, BID) in Huh7 xenograft mouse models with no obvious toxicity observed. Overall, compound 27i was identified as a promising preclinical candidate for overcoming FGFR4 gatekeeper mutations for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 4 , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Proliferation
11.
Expert Opin Ther Pat ; 33(4): 293-308, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37095742

ABSTRACT

INTRODUCTION: EZH2 is an important epigenetic regulator that forms the PRC2 complex with SUZ12, EED and RbAp46/48. As the key catalytic subunit of PRC2, EZH2 regulates the trimethylation of histone H3K27, which in turn promotes chromatin condensation and represses the transcription of relevant target genes. EZH2 overexpression and mutations are strictly related to tumor proliferation, invasion and metastasis. Currently, a large number of highly specific EZH2 inhibitors have been developed and some have already been in clinical trials. AREAS COVERED: The aim of the present review is to provide an overview of the molecular mechanisms of EZH2 inhibitors and to highlight the research advances in the patent literature published from 2017 to date. A search of the literature and patents for EZH2 inhibitors and degraders was performed using the Web of Science, SCIFinder, WIPO, USPTO, EPO and CNIPA databases. EXPERT OPINION: In recent years, a great number of structurally diverse EZH2 inhibitors have been identified, including EZH2 reversible inhibitors, EZH2 irreversible inhibitors, EZH2-based dual inhibitors and EZH2 degraders. Despite the multiple challenges, EZH2 inhibitors offer promising potential for the treatment of various diseases, such as cancers.


Subject(s)
Neoplasms , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Enzyme Inhibitors , Neoplasms/drug therapy , Neoplasms/genetics , Patents as Topic
12.
Biochem Pharmacol ; 210: 115493, 2023 04.
Article in English | MEDLINE | ID: mdl-36898415

ABSTRACT

The incidence and mortality rate of malignant melanoma are increasing worldwide. Metastasis reduces the efficacy of current melanoma therapies and leads to poor prognosis for patients. EZH2 is a methyltransferase that promotes the proliferation, metastasis, and drug resistance of tumor cells by regulating transcriptional activity. EZH2 inhibitors could be effective in melanoma therapies. Herein, we aimed to investigate whether the pharmacological inhibition of EZH2 by ZLD1039, a potent and selective S-adenosyl-l-methionine-EZH2 inhibitor, suppresses tumor growth and pulmonary metastasis in melanoma cells. Results showed that ZLD1039 selectively reduced H3K27 methylation in melanoma cells by inhibiting EZH2 methyltransferase activity. Additionally, ZLD1039 exerted excellent antiproliferative effects on melanoma cells in 2D and 3D culture systems. Administration of ZLD1039 (100 mg/kg) by oral gavage caused antitumor effects in the A375 subcutaneous xenograft mouse model. RNA sequencing and GSEA revealed that the ZLD1039-treated tumors exhibited changes in the gene sets enriched from the "Cell Cycle" and "Oxidative Phosphorylation", whereas the "ECM receptor interaction" gene set had a negative enrichment score. Mechanistically, ZLD1039 induced G0/G1 phase arrest by upregulating p16 and p27 and inhibiting the functions of the cyclin D1/CDK6 and cyclin E/CDK2 complexes. Moreover, ZLD1039 induced apoptosis in melanoma cells via the mitochondrial reactive oxygen species apoptotic pathway, consistent with the changes in transcriptional signatures. ZLD1039 also exhibited excellent antimetastatic effects on melanoma cells in vitro and in vivo. Our data highlight that ZLD1039 may be effective against melanoma growth and pulmonary metastasis and thus could serve as a therapeutic agent for melanoma.


Subject(s)
Lung Neoplasms , Melanoma , Skin Neoplasms , Humans , Animals , Mice , Cell Proliferation , Melanoma/genetics , Skin Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Methyltransferases , Cell Line, Tumor , Apoptosis , Enhancer of Zeste Homolog 2 Protein/metabolism
13.
J Med Chem ; 66(3): 1725-1741, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36692394

ABSTRACT

Enhancer of zeste homologue 2 (EZH2) is the enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2), which plays an important role in post-translational modifications of histones. In this study, we designed and synthesized a new series EZH2 covalent inhibitors that have rarely been reported. Biochemical studies and mass spectrometry provide information that SKLB-03220 could covalently bind to the S-adenosylmethionine (SAM) pocket of EZH2. Besides, SKLB-03220 was highly potent for EZH2MUT, while exhibiting weak activities against other tested histone methyltransferases (HMTs) and kinases. Moreover, SKLB-03220 displayed noteworthy potency against ovarian cancer cell lines and continuously abolished H3K27me3 after washing out. Furthermore, oral administration of SKLB-03220 significantly inhibited tumor growth in PA-1 xenograft model without obvious adverse effects. Taken together, SKLB-03220 is a potent, selective EZH2 covalent inhibitor with noteworthy anticancer efficacy both in vitro and in vivo.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Ovarian Neoplasms , Female , Humans , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/metabolism , Ovarian Neoplasms/drug therapy , Polycomb Repressive Complex 2/metabolism , Pyridones/pharmacology , Pyridones/therapeutic use , Pyridones/chemistry
14.
Eur J Med Chem ; 247: 115032, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36566712

ABSTRACT

PRMT6 is a member of the protein arginine methyltransferase family, which is involved in a variety of physiological processes and plays an important role in the occurrence and development of tumors. Due to the high homology of type Ⅰ PRMTs and the two close binding sites of the SAM pocket and the substrate pocket, selective PRMT6 inhibitors have rarely been reported. In this study, a series of (5-phenylpyridin-3-yl)methanamine derivatives were designed and synthesized, which could form hydrogen bonding interactions with the unique Glu49 of PRMT6, thereby improving the selectivity of the compounds for PRMT6. Among them, a25 had the best activity and selectivity, with more than 25-fold selectivity for PRMT1/8 and more than 50-fold selectivity for PRMT3/4/5/7, which was superior to these reported SAM competitive and substrate competitive PRMT6 inhibitors. Importantly, a25 could significantly inhibit the proliferation of various tumor cells and effectively induce apoptosis of cancer cells. Our data clarified that a25 is a promising selective PRMT6 inhibitor for cancer therapy which is worthy of further evaluation.


Subject(s)
Neoplasms , Nuclear Proteins , Humans , Nuclear Proteins/metabolism , Methylation , Protein-Arginine N-Methyltransferases , Repressor Proteins/metabolism
15.
J Med Chem ; 65(24): 16541-16569, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36449947

ABSTRACT

The activation of the STAT signal after incubation with the HDAC inhibitor represents a key mechanism causing resistance to HDAC inhibitors in some solid tumor cells, while the FGFR inhibitor could downregulate the level of pSTAT3. Inspired by the therapeutic prospect of FGFR/HDAC dual inhibitors, we designed and synthesized a series of quinoxalinopyrazole hydroxamate derivatives as FGFR/HDAC dual inhibitors. Among them, compound 10e potently inhibited FGFR1-4 and HDAC1/2/6/8 and presented improved antiproliferative effects of tumor cells. Further studies indicated that 10e also downregulated the expression of pSTAT3, potentially overcoming resistance to HDAC inhibitors. What's more, 10e significantly inhibited the tumor growth in HCT116 and SNU-16 xenograft models with favorable pharmacokinetic profiles. Collectively, these results supported that 10e could be a new drug candidate for malignant tumors.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Structure-Activity Relationship , Neoplasms/drug therapy , Histone Deacetylases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Cell Line, Tumor , Histone Deacetylase 1/metabolism
16.
Angew Chem Int Ed Engl ; 61(43): e202211356, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36055964

ABSTRACT

By designing a tetraphenylethylene (TPE)-based AIEgen-ligand with reduced symmetry, we obtained two alkaline-earth metal-based MOFs (LIFM-102 and LIFM-103) with dense packing structures and low porosity as proved by single-crystal X-ray diffraction and CO2 sorption data. Excitingly, the desolvated MOFs with rigid environment and reduced lattice free solvent exhibit high quantum yields (QY, 64.9 % and 79.4 %) and excellent two-photon excited photoluminescence (TPA cross-sections, 2946.6 GM and 2899.0 GM), while maintaining the external-stimuli-responsive properties suitable for anticounterfeit fields. The effect of ligand conformation was validated by comparing the structure and fluorescence properties of the samples before and after desolvation and further verified by theoretical calculations. This work expands the study on TPE-cored materials to symmetry-reduced ligand and might bring forward novel structures and excellent photoluminescent properties in the future.

17.
Angew Chem Int Ed Engl ; 61(32): e202205556, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35661372

ABSTRACT

Organic LPL (long-persistent luminescence) materials have sparked extensive research interest due to the ultralong-lived triplet states. Although numerous organic LPL materials have been reported, most of the triplet emission was static and monotonous. Therefore, LPL materials with dynamic triplet emission are urgently required. A triamino-s-triazine derivative 1 with dynamic LPL was fabricated. The single-crystal structure shows that the abundant intermolecular interactions and small free volume restrict the molecular motion and avoid the quenchers. Spectral and theoretical calculations upheld the existence of multiple excited states in 1, and the migration of electrons between multiple excited states is very sensitive to external stimuli. By modulating the stimulus, the residence of electrons in different triplet states can be manipulated to achieve RGB LPL. Importantly, blue LPL was achieved by manipulating the anti-Kasha emission. And the red LPL can still be observed at high temperature.

18.
Pharmacol Res ; 178: 106159, 2022 04.
Article in English | MEDLINE | ID: mdl-35259482

ABSTRACT

Enhancer of zeste homologue 2 (EZH2, also known as KMT6A) is found to be a member of the histone lysine methyltransferase family. An increasing number of studies have shown that in addition to methylating histones, EZH2 plays a vital role in a variety of ways. The methylated substrates of EZH2 also include GATA4, AR/AR-related proteins, STAT3, Talin protein, and RORα. Meanwhile, EZH2 has been reported to form complexes with some proteins to perform other important biological functions as well as methylation. These complexes include: the EZH2-RelA-RelB complex, EZH2-ER-ß-catenin complex, and ß-catenin-PAF-EZH2-Mediator complex. Herein, we focus on the classical and non-classical functions of EZH2, and summarize anti-EZH2 therapeutic strategies. Finally, we highlight that understanding the physiological and pathological functions of EZH2 in specific indications can help the development of inhibitors or degraders.


Subject(s)
Histones , beta Catenin , Histone-Lysine N-Methyltransferase , Histones/metabolism , Methylation , beta Catenin/metabolism
19.
Curr Org Synth ; 19(5): 583-590, 2022 08 06.
Article in English | MEDLINE | ID: mdl-34994315

ABSTRACT

BACKGROUND: SKLB1039 is a potent, highly selective, and orally bioavailable EZH2 inhibitor, which significantly inhibited breast tumor growth and metastasis in pre-clinical studies. In a previously reported synthesis of SKLB1039, the yields of several steps were low, which led to an overall yield of less than 10%. In addition, flash chromatography was required for the purification of several intermediates using this route. OBJECTIVE: To optimize the synthesis and establish an efficient commercial-scale method for the production of SKLB1039. METHODS: The reaction time, solvent, reactant ratio, temperature, and mode of addition of reactants in the reductive amination, hydrolysis, hexahydroisoquinoline formation, hydrogenolysis, condensation and Suzuki crosscoupling reactions were optimized. RESULTS: A chromatography-free seven-step process starting from a commercially available material was developed that afforded SKLB1039 in 36% overall yield with > 99% purity. CONCLUSION: A cost-effective, high-yielding, and convergent kilo-scale synthesis for the EZH2 inhibitor SKLB1039 was developed. The operation was simple, and the pure product was easily obtained without column chromatography. This method will be economical and convenient for the subsequent industrial scale-up production of SKLB1039, which will be conducive for this promising EZH2 inhibitor to enter clinical studies of its antitumor effects.


Subject(s)
Breast Neoplasms , Enzyme Inhibitors , Enhancer of Zeste Homolog 2 Protein , Female , Humans
20.
Biomed Pharmacother ; 147: 112617, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34998031

ABSTRACT

The histone lysine methyltransferase EZH2 has been implicated as a key component in cancer development. Up to date, there are only a few EZH2 covalent inhibitors. In this study, a new series of 3-acrylamido-2-methyl-N-((2-oxo-1,2-dihydropyridin-3-yl) methyl) benzamide derivatives were designed, synthesized, and demonstrated to act as EZH2 covalent inhibitors, among which SKLB-03176 was the most potent compound. SAM competition experiments, mass spectrometry, and washing-out assays proved that SKLB-03176 could covalently bind to the SAM pocket of EZH2. Remarkably, SKLB-03176 exhibited weak activity against other targets, such as 5 histone methyltransferases and more than 30 kinases. Besides, it could inhibit the activity of a variety of EZH2 mutants and significantly inhibit the expression of H3K27Me3 in cells. Furthermore, SKLB-03176 showed no cytotoxicity to normal cells. Our data suggested that SKLB-03176 could be used as a promising lead compound for the development of new EZH2 covalent inhibitors and a valuable chemical tool to study the biological functions of EZH2 or PRC2.


Subject(s)
Antineoplastic Agents/pharmacology , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Cell Line/drug effects , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Histone Methyltransferases/metabolism , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...